当前位置:论文网 > 论文宝库 > 工程技术类 > 机械论文 > 正文

变频器节能市场分析

来源:UC论文网2019-04-08 10:55

摘要:

  摘要 据估算,我国电动机总装机容量约5.8亿千瓦,占全国总耗电量的60%~70%。其中,交流电动机占90%左右。目前各类电机的运行效率加权平均比国外低3%~5%,风机和泵的效率要比发达国家低2%~3%,整体在用的电机驱动系统运行效率比国外低近20%。如果按电动机总容量的10%进行调速改造,按年平均运行4000时、节电率20%~25%计算,年节电潜力为320亿~400亿千瓦时。加上为改善工艺流程...

  摘要 据估算,我国电动机总装机容量约5.8亿千瓦,占全国总耗电量的60%~70%。其中,交流电动机占90%左右。目前各类电机的运行效率加权平均比国外低3%~5%,风机和泵的效率要比发达国家低2%~3%,整体在用的电机驱动系统运行效率比国外低近20%。如果按电动机总容量的10%进行调速改造,按年平均运行4000时、节电率20%~25%计算,年节电潜力为320亿~400亿千瓦时。加上为改善工艺流程而进行调速改造的电动机可带来的节电潜力,总节电潜力约为500亿千瓦时,相当于10000兆瓦装机容量的火力发电厂的年发电量。由此可见,电机系统节能是目前中国节能市场上最具商业潜力的领域。


  关键词变频器;制动电阻;热能消耗;节能


  中图分类号TN773文献标识码A文章编号1673-9671-(2010)082-0122-01


  1节能是变频器的重要领域和潜力市场之一


  电机系统节能是国家发改委启动的十大重点节能工程之一,国家发展规划要求,当前应推广变频调速节能技术,即风机、水泵、压缩机等通用机械系统采用变频调速节能措施,工业机械采用交流电动机变频工艺调速技术。在“十一五”期间,我国将实现电机系统运行效率提高2个百分点,形成年节电能力达200亿千瓦时的目标。众所周知,风机和水泵是变频器节能的重要领域和潜力市场领域,其使用量占据变频器市场份额的半壁江山。


  2节能及能量反馈


  通用变频器大都为电压型交―直―交变频器,三相交流电首先通过二极管可控硅整流桥得到脉动直流电,再经电解电容滤波稳压,最后经无源逆变输出电压、频率可调的交流电给电动机供电。这类变频器功率因数高、效率高、精度高、调速范围宽,所以在工业中获得广泛应用。但是通用变频器不能直接用于需要快速起、制动和频繁正、反转的调速系统,如高速电梯、矿用提升机、轧钢机、大型龙门刨床、卷绕机构张力系统及机床主轴驱动系统等。因为这种系统要求电机四象限运行,当电机减速、制动或者带位能性负载重物下放时,电机处于再生发电状态。由于二极管可控硅整流器能量传输不可逆,产生的再生电能传输到直流侧滤波电容上,产生泵升电压。而以GTR、IGBT为代表的全控型器件耐压较低,过高的泵升电压有可能损坏开关器件、电解电容,甚至会破坏电机的绝缘,从而威胁系统安全工作,这就限制了通用变频器的应用范围。


  2.1将反馈到直流回路的能量以制动电阻的热能消耗掉的缺点


  在这种情况下,要实现四象限运行只能通过外接制动单元和制动电阻来实现,也就是说将反馈到直流回路的能量以制动电阻的热能消耗掉。所以说,这种制动方式又称为能耗制动。该方法虽然简单,但有如下严重缺点:


  1)浪费能量,降低了系统的效率;


  2)电阻发热严重,影响系统的其他部分正常工作。


  简单的能耗制动有时不能及时抑制快速制动产生的泵升电压,限制了制动性能的提高(制动力矩大,调速范围宽,动态性能好)。正是由于能量反馈在实现上的难度系数大,很多用户甚至将此不作为节能看待,这是一个危险的信号。


  2.2能量回馈系统的特点


  能量反馈系统在实际运行中主要有二种方式:单独的能量反馈装置和能量回馈技术的新发展――双PWM控制技术。


  所谓能量反馈装置,就是把有源逆变单元从变频器中分离出来,直接作为变频器的一个外围装置,可并联到变频器的直流侧,将再生能量回馈到电网中。能量回馈单元的作用,就是取代原有的能耗电阻式制动单元,消除发热源,改善现场电气环境,可减少高温对控制系统等部件的不良影响,延长了生产设备的使用寿命。同时由于能量回馈单元,能有效的将变频器电容中储存的电能回馈20%~40%左右。


  3能量反馈单元具有如下特点


  1)降低运行成本,包括减少电能损耗、提高功率因数、改善电网运行质量等;


  2)提高制动能力,如果以传统的标准制动电阻器与变频器的组合,制动力矩大约为120%额定力矩/10s,10%ED;而VS-656RC5与变频器的组合,制动转矩则提高到150%额定转矩/30s或者100%额定转矩/1min(25%ED)或者80%额定转矩/连续再生。送给交流电网,供周边其他用电设备使用,则可节约生产用电,一般节电率可达20%。


  4双PWM控制技术


  双PWM控制技术的工作原理:当电机处于拖动状态时,能量由交流电网经整流器中间滤波电容充电,逆变器在PWM控制下降能量传送到电机;当电机处于减速运行状态时,由于负载惯性作用进入发电状态,其再生能量经逆变器中开关元件和续流二极管向中间滤波电容充电,使中间直流电压升高,此时整流器中开关元件在PWM控制下降能量馈如到交流电网,完成能量的双向流动。同时由于PWM整流器闭环控制作用,使电网电流与电压同频同相位,提高了系统的功率因数,消除了网侧谐波污染。双PWM控制技术打破了过去变频器的统一结构,采用PWM整流器和PWM逆变器提高了系统功率因数,并且实现了电机的四象限运行,这给变频器技术增添了新的生机,形成了高质量能量回馈技术的最新发展动态。无论是能量反馈单元和双PWM控制方式都能将能量反馈会电网,形成节能降耗、清洁生产的良好局面,其在变频器节能领域的占有率将从目前不到3%快速上升到15%。


  5变频器的工艺调速市场分析


  目前,中国的设备控制水平与发达国家相比还比较低,制造工艺和效率都不高。但随着中国加入WTO,产品质量和生产效率都需要面临国际竞争,因此提高设备控制水平至关重要。由于变频调速具有调速范围广、调速精度高、动态响应好等优点,在许多需要精确速度控制的应用中,变频器正在发挥着提升工艺质量和生产效率的显著作用,其市场容量占到整个变频器市场容量的1/3左右。应用变频器可以提高工艺要求、提升产品质量,同时减轻了人工的劳动强度、提高了生产效率,可以说,变频器在纺织、食品、饮料、包装、造纸、机床、电梯等行业的应用前景和发展潜力都不可小觑。比如应用在传送带上的变频工艺控制系统,它采用一台变频器驱动生产线上的多台传送带电机,根据所生产的产品,通过调整传送带的速度来提高生产率。在传送带上应用变频工艺控制系统具有以下3个优点:


  1)提高生产率,通过设定变频器的频率,可控制传送带生产线的速度,从而达到了提高生产率达目的;


  2)可利用现有设备,可利用现有传送带上的齿轮马达和现有的传送带进行改动;


  3)可用一台变频器来控制多数电动机的驱动,这些电动机均并接到一台变频器上,通过变频器的频率设定可以保证多台电动机的同步运行。


  6结束语


  众所周知,采用变频调速技术是工业企业中节能降耗、保证工艺的重要途径,在实际应用中取得的效果和效益有目共睹,以上试图从市场的角度剖析变频器的容量、占有率和主要的应用领域,与广大读者一同探讨变频器的发展。


核心期刊推荐